
Context-based Risk-Adaptive Security Model
and Run-time Conflict Analysis

Mahsa Teimourikia, Guido Marilli, and Mariagrazia Fugini

Politecnico di Milano,
Via Ponzio 34/35, 20133 Milan, Italy

mahsa.teimourikia@polimi.it,guido.marilli@mail.polimi.it

mariagrazia.fugini@polimi.it

Abstract. In dynamic and risk-prone environments, security rules should
be flexible enough to permit the treatment of risks, and to manage privi-
leges on physical and virtual resources for various authorized users based
on the situation at hand. For this purpose, we define safety-centric con-
texts based on risk description that is provided by the Safety Manage-
ment System (SMS). This paper presents a risk-adaptive Access Control
System (ACS) that adopts hierarchies of contexts and Access Control
Domains (ACDs) to make adaptations to risks related to safety at differ-
ent levels of criticality. Since various risks may arise simultaneously, two
or more ACDs might be applicable at the same time incorporating vari-
ous security rules which might lead to conflicts. Therefore, an approach
to dynamically detect and resolve conflicts is essential. In this work, we
propose a run-time conflict analysis and resolution algorithm based on
XEngine and we illustrate its usage with the proposed risk-adaptive ACS.

Keywords: attribute-based access control; security; xacml; security pol-
icy conflict analysis; context-awareness; safety management.

1 Introduction

Today, access control paradigms are moving from traditional models such as
Role-Based Access Control (RBAC) to Attribute-Based Access Control (ABAC)
[6], which offers a fine-grained access control over resources by considering rele-
vant attributes for users, resources and the environment, and hence, it enables
more expressive security policies. On one hand, access control models are also
being applied on physical and virtual resources [4, 3, 10], specially in smart work
environments where the ”things” (i.e., machinery and tools) are interconnected
to form the Internet of Things (IoT). On the other hand, in a risk-prone envi-
ronment such as construction and process industries, security policies should be
flexible enough to permit the treatment of risks when necessary, and to manage
privileges on physical and virtual resources for various authorized users based
on the situation at hand.

Context-awareness in security is concerned with adaptation of security rules
at run time to the situation at hand. In smart environments, adopting Internet

2 Mahsa Teimourikia et al.

of Things (IoT), various monitoring data is available to recognize the situa-
tional factors, facilitating incorporation of context-awareness into access control
of physical resources. In these environments, security rules should be managed
adaptively based on the events that arise on the fly, such as the events that
indicate potential risks to people’s safety [3].

Previously, we presented a risk-adaptive ACS based on ABAC where we
adopted Access Control Domains (ACDs) that include set of security rules de-
fined for specific risk situations [3]. In the proposed approach, we assumed dealing
with only one risk at a time to avoid unpredictable conflicts that may arise if
more than one ACD be applicable simultaneously. Considering dynamic com-
bination of ACDs, conflicts between security rules may arise which should be
tackled at run-time. We adopted XACML that enables usage of combination
algorithms at rule and policy levels to avoid conflicts. However, in our case this
is not enough and still conflicts may arise because of the dynamic changes of the
combinations of security rules.

Furthermore, in order to avoid repetition of the security rules in the ACDs
there is a need to consider hierarchies of ACDs where child ACDs inherit the
security rules defined in their parents. In addition, it should be taken into con-
sideration that when there is a case of an emergency or crisis, there is not enough
time to reason about the situation at hand and an approach should be considered
for managing the emergency situations at run-time.

This paper, presents our approach to resolve mentioned problems in our risk-
adaptive ACS. We define safety-centric contexts based on the risk description
provided by the Safety Management System. We also propose an approach for
calculating the level of criticality of the contexts to form hierarchies of con-
texts, each related to an ACD that deals with risks with different types and at
different levels of criticality. Since, various risks can arise simultaneously, two
or more ACDs would be applicable at a time causing unpredictable conflicts on
run-time. To overcome this problem, we propose a run-time conflict analysis and
resolution algorithm based on XEngine which dynamically resolves conflicts and
adequately merges security rules that are simultaneously applicable. Further-
more, to manage the emergency situations that are time-critical, we consider a
“break-glass” ACD that is activated when one or more of the context’s criticality
level is “emergency”.

The paper is organized as follows: Section 2 reviews the state of the art. In
Section 3 we introduce the preliminary concepts. Section 4 illustrates a scenario
that puts in evidence a typical case of policy conflict. Section 5 shows the archi-
tecture of the Risk-Adaptive Access Control System (ACS). Section 6 presents
our solution for conflict analysis and its resolution at run-time based on the
proposed architectural framework. Section 7 gives some details about how we
implemented our solution. And finally, Section 8 contains concluding remarks
and ideas for future work.

Title Suppressed Due to Excessive Length 3

2 Related work

Access Control Systems (ACSs) are the first line of defense in the overall secu-
rity of a system. ACS applied to physical and virtual resources mainly protects
the access points. Traditional ACSs such as Mandatory Access Control (MAC),
Discretionary Access Control (DAC) and Role-Based Access Control (RBAC),
mainly focus on defining user rights precisely to avoid any violations of the de-
fined security rules [7]. However, traditional access control models demonstrate
limited capabilities for adaptations to dynamic changes because of considering
static security rules that determine the authorization decisions [7].

Risk-Adaptive Access Control is an emerging topic in the current research [3,
13, 1] which mainly concerns with the balancing the risk of granting or denying
access to resources. While the research has mostly focused on security risks man-
agement in access control models [2, 1], there are limited works on considering
adaptations based on safety risks.

In [13], authors propose a criticality-aware ACS based on RBAC, where,
according to the critical state of the environment, privileges of users can be dy-
namically altered by changing the user roles and the Access Control Lists (ACL)
associated to the resources. Due to the adoption of RBAC, in the dynamic au-
thorization process, they do not consider relevant attributes such as the location
of the person or physical devices but they limit their proposal to the clearance of
users. Moreover, dynamic authorizations, namely authorizations that are varied
at run time according to what happens in the environment must be kept com-
pliant with the overall security objectives of organizations, ensuring that there
is always a balance between security and safety based on defined protocols of
the organization.

ABAC has a potential to enable fine-grained access control in IoT applica-
tions because of its ability in accommodating changes to various attributes of
users and resources to promote fine-grained and dynamic AC [6]. In [3], we de-
scribed our approach, based on ABAC, to manage the dynamic changes to the
security-related attributes of users and resources to dynamically authorize their
privileges based on risks that are detected in the environment. In this work, we
extend [3] to introduce the use of hierarchies of contexts and ACDs. Contexts in
our view are safety-centric and represent a situation based on risks detected in
the environment and their level of criticality. With the valuable data gathered
in IoT environments, risks concerning the safety of people at various levels of
criticality can be identified [5]. To manage risks, different approaches employ
break-glass policies in ACS [11]. However, more flexible and fine-grained ACS
can be applied having various, yet finite and manageable sets of security policies
(defined as access control domains) for different contexts.

However, during dynamic adaptations of security policies, conflicts may arise.
Conflict detection and resolution has been an interesting topic that attracted
great amount of research during current years [12, 9, 14]. In [12], authors translate
restrictions in ACLs via OpenLDAP and offer a GUI that lets the administrator
manually resolve the highlighted conflicts. However, this approach is not feasible
where it may be necessary to combine undefined numbers of ACDs at run time,

4 Mahsa Teimourikia et al.

because it requires long computation times that are incompatible with run time
needs.

In this paper, we propose an approach similar to XEngine [8], which is an
efficient XACML policy evaluation engine and therefore, it can be adopted at
run-time with acceptable performance. XEngine enables management of multi-
valued attributes and requests and resolves the issue of merging policies with
different combining algorithms by normalizing them to “First-applicable”. How-
ever, since this approach only applies on policies with the same target, we extend
it in order to apply it on ACDs with different targets (a target of an ACD in
our case is simply identified by the context).

3 Preliminary Definitions

In this section, we define the preliminary concepts that will be used throughout
this paper. Risks related to safety in industrial environments refer to the threats
that might endanger the health or life of the workers, which we simply refer
to as “risks” from now on. As a policy language we adopt XACML, which its
components are described in Table 1.

Table 1: XACML Components

XACML Component Description

Policy Set It’s a set of policies, characterized by a target and a combining
algorithm.

Policy It’s a set of rules, that apply to a certain target. Its result is
computed basing on the chosen combining algorithm.

Rule It’s contained in a policy and is composed by a target, condition
and an effect.

Target Describes a set (or range) of values for the various categories’
attributes, under which the policy/rule is applicable.

Condition It’s an expression in a rule that evaluates to true or false and
along with the target determines the effect of the rule/policy.

Effect It’s the outcome of a rule/policy. The possible allowed values
are usually permit and deny.

Policy Combining
Algorithm

It’s the procedure according to which the results of the policies
in the policy set are combined.

Rule Combining Al-
gorithm

It’s the procedure according to which the results of the rules of
a policy are combined.

Attribute Characteristic of a subject, resource, action or environment.
Each category usually has a set of attributes.

Table 2 lists the four main rule/policy combining algorithms in XACML, namely:
deny overrides; permit overrides; first applicable; only one applicable.

Title Suppressed Due to Excessive Length 5

Table 2: Combining Algorithms

Algorithm Description

Deny-overrides If any evaluation returns deny, then the result must be deny,
even if other evaluations have returned permit.

Permit-overrides If any evaluation returns permit, then the result must be
permit, even if other evaluations have returned deny.

First applicable Rules are evaluated in their listing order.
Only-one-applicable For all of policies in the policy set, if no policy applies, then

the result is NotApplicable. If more than one policy applies,
then the result is Indeterminate. If only one policy applies,
then the result is the result of evaluating that policy.

Moreover, Table 3, summarizes the basic definitions regarding the proposed ACS.
These include: Subject S, Object O, Environment EN, Privilege P, Access Control
Domain ACD, Security Rule SR, Monitoring Device MD, Hazard H, Risk R, and Con-
sequence .

Table 3: Definitions & Notations

Notation Definition

S Finite set of entities both needing authorization to access resources (e.g.,
safety teams) and needing protection against risks (e.g., workers).

O Finite set of physical resources or “things” (objects), e.g., tools, machinery,
devices, that subjects can access or act on.

EN Finite set of environment sections.
P Finite set of privileges that are actions which subjects can perform on

objects.
ACD Finite set of access control domains that contain security rules designed

for different contexts.
SR Finite set of security rules.
MD Finite set of monitoring devices that sense data from S, O, and/or EN,

e.g., sensors, cameras, wearable sensors, etc.
H Finite set of hazards acknowledged via events in the environment; hazards

might turn into risks.
R Finite set of risks identified in EN and endowed with attributes such as

Type, Probability, Source, Location, and Consequence.
C Finite set of consequences which originate from each ri ∈ R, endowed with

attributes such as: Type, Intensity, Probability.

ABAC is the basis of the the ACS, where S, O, and EN and their attributes, SA,
OA, and ENA respectively, are evaluated by the ACS for a fine-grained authorization,
considering the applied SR. We distinguish two types of attributes (ATTR = SA∪OA∪
ENA): 1) security related ATTRsec, (e.g., security level, role) that are defined by the
security administrator; and 2) context related attributes ATTRcontext, like location,

6 Mahsa Teimourikia et al.

and time, that are dynamically set when the relevant data is received from MD. EN is
considered to be an Smart Work Environment (SWE), where, ATTRcontext defines the
global safety-centric context that identifies the risk type and its intensity that affects
the whole or parts of the environment including the subjects and objects inside it. To
adopt XACML, SR is mapped to the Rule component, ACD is mapped to the Policy
component and the applicable ACDs are considered as the Policy Set in XACML.

4 A Motivating Scenario

In this section, we introduce a motivating scenario to illustrate a use-case in which
conflicts may arise. In our approach under “safe” conditions an ACD defined for the
safe context applies. If we enter into a risk state with a particular intensity, the related
ACD applies that contain security rules previously designed based on the organizations
policies and protocols for management of that specific risk which usually relax some
otherwise restricted security rules. Considering the possibility of dealing with more
than one risk simultaneously, security rules should allow management of all the risks
that are present. Therefore, when there are conflicts, rules permitting the execution of
preventive or corrective strategies for risk management should prevail. While, in some
cases we might want to restrict some permissions for safety reasons, e.g., a machinery
is detected to be faulty and we want to restrict access to that machinery to avoid
eventual risks. Hence, we cannot always have the assumption of Permit-Overrides when
combining several ACDs.

In what follows we make an example for clarifying the issue. Assuming to have
following ACDs, defined for two different risk situations:

acd1 :Context = ShortCircuit

ru1 : IF {req.o.Type == ”FireSprinkler” ∧ req.p == ”TurnOn”}
THEN {effect == Deny}

ru1 ∈ acd1 indicates that if anyone tries to activate the fire sprinkler system when
there is a risk of electrical short circuit, the effect must be deny (water on a electrical
short circuit may cause electric shock).

acd2 :Context = Fire

ru1 : IF {req.s.ActiveRole == ”RiskManager” ∧ req.o.Type == ”FireSprinkler”

∧ req.p == ”TurnOn”}
THEN {effect == Permit}

While, ru1 ∈ acd2 indicates that in case of fire, the risk manager should to be
permitted to turn on the fire sprinkler system if necessary.

Therefore, If electrical short circuit and fire risks are arise simultaneously, ACS
have to consider both security rules at the same time. In this case, if the fire sprinkler
system starts, the short circuit could intensify the fire and cause electric shock so
the proper PolicySet combining rule (reminding that XACML PolicySet indicated the
applicable ACDs in our case) should be deny-overrides. In conclusion, the hypothesis
that the in case of multiple risks the most permissive security rule should prevail is not
always correct.

Title Suppressed Due to Excessive Length 7

Another interesting case happens if the PolicySet combining rule is First-applicable.
Considering the particular nature of our system, the order of applicability of the ACDs
is not predictable and therefore, it is possible that the ACDs will be analyzed in two
possible orders (acd1, acd2 or acd2, acd1). In this way, there is a 50% probability
that the ACS will behave wrongly. Furthermore, in such critical systems concerning
with security and safety, the unpredictability of behavior and results is by no means
desirable.

In the following sections, we introduce our proposed risk-adaptive ACS followed
with the conflict analysis and resolution method for tackling the problems mentioned
in this scenario.

5 Risk-Adaptive Access Control System (ACS)

In this section, the architecture of the ACS is presented. Its novelty lies in considering
hierarchies of contexts and access control domains to manage different risks at different
levels of criticality; while adopting break-glass policies in case of a crisis.

5.1 Risk-Adaptive ACS Architecture

The architecture of the risk-adaptive ACS is depicted in Fig. 1. While MD monitor
ATTRcontext, data streams are sent to the Safety Management System (SMS), which,
in a MAPE loop [3]: 1) monitors the meaningful parameters and identifies the hazards
Hc ⊆ H if there are any; 2) analyzes Hc ⊆ H and performs risk assessment to provide
the description of the risk and its consequences; 3) plans the preventive strategies; 4)
executes the strategies that can be automatically executed by the SMS (e.g., turn on
alarms), and supports the execution of human-operated strategies (e.g., evacuation of
an area).

Hazard hi ∈ Hc may lead to a set of risks Rc ⊆ R, each with the following attributes
that constitute the “risk description”: Type as a unique name identifying the kind of
the risk (e.g., fire); Source as the entity in the EN (device, machine, etc.) causing
the risk; and Location refers to the eni ∈ EN affected by the risk. To simplify, we
consider risks to be independent, as the dependency between risks can complicate the
risk assessment procedure since dependent risks may have effects on one another.

Each ri ∈ Rc is connected to a set of consequences Cci ⊆ C. In the analysis phase,
the SMS also calculates the following attributes for each risk’s consequence: Type,
that is a unique name identifying the kind of the consequence, e.g., damage to the
infrastructure, injury, death, etc; Intensity, namely the severity of the consequence,
specified as a level; and Probability, namely the degree of uncertainty related to the
occurrence of such consequence. In the planning phase performed by the SMS, the
ACS receives the risk description and uses it to identify the “Context”. We consider a
safety-centric approach to model the Context, considering different attributes of a risk
and its consequences.

5.2 Hierarchical Contexts and Access Control Domains

Fig. 2 shows how Contexts are mapped to the ACD considering the hierarchy of Con-
texts and ACD. Contexts are defined in a hierarchy where the Safe Context defines
the state of the environment that is considered as safe, namely with no risks. Contexts

8 Mahsa Teimourikia et al.

Fig. 1. Architecture of the risk-adaptive access control system.

Fig. 2. Hierarchical levels of ACD.

{Context1, ..., Contexti}, each refer to a risk-prone state of the environment, where dif-
ferent risks and consequences are present. Levels {Level1, ..., Levelm} are considered
to represent the criticality of the Context that allows prioritizing its importance. For
instance, a Context with Level4 of criticality (e.g., fire) is considered with higher prior-
ity than a Context with Level1 (e.g., dust in the air), hence deserving different priority
of actions to face the potential risk. Finally, the Emergency Context is associated with
the highest level of criticality and has the highest priority over all the Contexts.

To consider safety-centric contexts we consider two factors: First, based on the risk
description RD = {ri.T ype, ri.P robability, ri.Source, ri.Location, ri.Consequence}, where
ri ∈ Rc, we define the Context which is a name assigned to it that represents the safety
status of the environment. Then considering the {ri.cj .T ype, ri.cj .P robability, ri.cj .Intensity},
where cj ∈ Cci, the Level is defined that illustrates the hierarchy of the contexts with
respect to its criticality. Receiving the risk description from the SMS triggers the pro-
cess of setting Contexts and calculating its Level.

Title Suppressed Due to Excessive Length 9

Table 4. Notations for formal representations of ECA rules

Notation Representation

ON Operator catching an event
IF Logical conditional operator for checking the conditions rep-

resented in the risk description
→ logical then operator representing the action which is setting

the proper contexts
∧ Logical AND operator
∨ Logical OR operator
∼ Logical NOT operator
> Greater than
< Less than
== Equivalent to
= Set to
++ Increment operator
ADD(param, set) Operator for adding a value (param) to a set.
REMOVE(param, set) Operator for removing a value (param) to a set.
ISIN(param, set) A Boolean operator that checks if a value (param) exists in

a set.

ECA Rules for Dynamically Selecting the Access Control Domains:
To select the Context that best describes the safety status of the environment we con-
sider a rule-based approach. Event-Condition-Action (ECA) rules have been commonly
used for modeling context-aware behavior because of their flexibility and expressive-
ness. Moreover, adopting ECA rules enables defining contexts based on protocols and
overall safety objectives of different organizations. We introduce formal notations for
representation of ECA rules. Later on we introduce our XML implementation used for
implementing and adopting them in applications. Table 4 lists the formal notations
defined for representing ECA rules.

Calculating Context Level of Criticality: To calculate the level of criticality of
the contexts, as mentioned before, we consider risk consequences and their probability,
and intensity. Types of Consequences of risks can be categorized as: Loss of life; In-
jury; damage to infrastructure and physical resources; financial damage; and reputation
damage. Moreover, the probability and intensity of the consequences are represented
with qualitative measures, namely: Very high; high; medium; low; very low. The types
of consequences are quantified by assigning a value to them which is usually based on
the organization’s protocols and views. For example, one organization may consider
reputation damage more important than the financial damage and therefore assigns a
higher value to it. And to quantify the probability and intensity we consider integer
values starting with 1 to represent very low and 5 representing very high (more fine
grained values can be used if needed). Table 5 represent the examples of quantitative
values that can be considered for consequence type, probability and intensity. These
values are defined based on their importance according the the organization views.

10 Mahsa Teimourikia et al.

Table 5. Qualitative and quantitative scales for calculating Contextlevel

cj .T ype cj .P robability cj .Intensity Value

Loss of life Very high Very high 5
Injury High high 4
Damage to infrastructure and resources medium medium 3
Reputation damage Low Low 2
Financial Damage Very low Very low 1

The Context Level is calculates as follows:

ContextLevel = ri.P robability ×

(
n∑

j=1

cj .T ype× cj .P robability × cj .Intensity

n

)
(1)

where cj ∈ Cci and Cci is the set of n detected consequences of ri ∈ Rc.
To define the safe and emergency contexts, we define two thresholds based on the

views and protocols of the organization, namely: Tsafe which represents a threshold
on ContextLevel below which is considered safe; and Temergency that a threshold on
ContextLevel above which is considered an emergency situation. All other ContextLevel

values in between Tsafe and Temergency are normalized to an integer between [1..m].

Mapping Contexts to ACDs: Contexts are mapped into different hierarchies of
ACD that are sets including the security rules applied to control the access to ob-
jects under safety-related circumstances. As depicted in Fig. 2, we define a hierarchy
of acdi ∈ ACD. The General acd defines a subset of SR that is commonly applied
regardless of the Context. This allows avoiding to repeat the common, shared security
policies in different ACDs. The Safe acd includes a subset of SR that is applied in a Safe
Context. Moreover, {acdL1, ..., acdLm} are defined for each {Context1, ..., Contexti} as
Context-specific acd to include the subsets of SR that are applied in different Contexts
at different Levels. When a Context-specific acd with Lx is applied, all the Context-
specific acd with the lower levels for the same Context will also apply, while SR com-
bination rules are in place that give the precedence to the SR at the higher level
Context-specific acd when a conflict arises. Moreover, if a Context is considered as an
“emergency” then not the General acd nor the other Context-specific acds would apply
and only the “Break-Glass” acd will be considered that includes a subset of SR that
apply in an emergency situation.

Since we are mapping the ACDs to XACML Policies, mapping contexts to ACDs
is facilitated. Here we make an example to clarify:

An Example: Considering a process industry where a risk description is received
from SMS which indicates that there is a medium probability of risk of fire, with
the risk source of gas pipes, in the warehouse. The consequences are estimated to be
injury, with high probability and medium intensity, and damage to infrastructures and
resources with high probability and very low intensity. According to the organization
protocols, injury has an importance value of 4 while for damage to infrastructure
and resources this value is 2. Also the thresholds are defined as: Tsafe = 24 and
Temergency = 110. The Contextlevel is calculated according to (1) and Table 5 which
equals to 108. Since Contextlevel > Tsafe we are not in the safe context and similarly

Title Suppressed Due to Excessive Length 11

as Contextlevel < Temergency we are not in emergency context either. If the calculation
of Contextlevel indicates a safe or an emergency context we set the context accordingly
and skip the next step. Otherwise, which is also our case in this example, the value of
Contextlevel is normalized to an integer value between [1..m]. Here we consider m = 5
that leads to having five levels of criticality. Considering Temergency to get the highest
possible level of criticality, Contextlevel will normalize to 4.77 that is rounded to 5.

In the next step the Context should be specified using ECA rules:

ON : ri.T ype == ”Fire”

IF : ri.Location = ”Warehouse” ∧ ri.Source = ”GasPipes”

→ ADD(”FWG”, Context).

The above mentioned ECA rule specifies that on the event that there is a risk of
fire with the conditions that the location is the warehouse and the risk source is the gas
pipes a context is set to FWG that is a unique name for this situation and its added
to the set of active contexts.

6 Run-Time Conflict Analysis and Resolution

As shown previously, when there are several contexts active at the same time, conflicts
may arise with the combination of SR in the corresponding ACDs. In the case of the
Safe and Emergency contexts, we would not face this problem as in emergency context
only the Break-Glass ACD is active, and in the safe context other risk-related contexts
are not present and therefore we would not face unpredictable conflicts and the use of
XACML combination rules suffices.

For conflict analysis and resolution we adopt XEngine [8] which fits pretty well to
our needs, namely, it is efficient for a run-time approach. In fact, merging policies that
have different XACML combining algorithms to produce appropriate results is quite
a complex task, as we illustrated in an example in Section 4. The authors in [8] solve
this problem by normalizing policies and converting all combining algorithms to “First-
Applicable”. The result of this procedure is a sequence of range rules < predicate >→<
decision >.

An issue is that XEngine merges policies with the same target, however, we need
to merge policies (ACDs) with different targets that in our case are the contexts that
are enabled at the same time. To resolve this issue, we propose creating a string with
separators that contains the enabled Contexts and then, when a request arrives, all the
SR in the corresponding ACDs are treated as they have the same target and therefore
merged properly.

6.1 Request Analysis

Every request sent by a subject is analyzed by the analyzeRequest function, shown in
listing 1.1. When this function is called, it checks if there are active Contexts; if one
of the Contexts is “emergency”, then the “break-glass” policy is selected. In general, a
policySet set is generated and normalized, obtaining a set of range rules, from which we
obtain a Policy Dependency Diagram (PDD) [8]. Starting from the PDD we generate
a set of forwarding tables that let us compute the effect of the request.

12 Mahsa Teimourikia et al.

analyzeRequest (Request req) : S t r ing {
i f i sContextEnabled (req . context))

S t r ing [] ac t iveContext s = getAct iveContexts ()
S t r ing ACDActive
i f i sEmergencyActive (ac t iveContext s)
ACDActive = getBreakGlassACD ()

else
ACDActive = getActiveContextACD (act iveContext s)

RangeRule [] rangeRules = xacmlPol icyNormal izat ion (ACDActive)
PDD pdd = getPDD(rangeRules)
ForwardingTable [] forwardingTables =

constructForwardingTables (pdd)
Orig inBlock r e s u l t = processRequest (req , forwardingTables)
return r e s u l t . d e c i s i o n

else
return ”deny”

}

Listing 1.1. Request analysis main functions

6.2 Risk and Emergency Support Function

In Listing (1.2), the support functions called by analyzeRequest are shown: isCon-
textEnabled checks if the context specified in the request is among the risk specific
contexts that are active; isEmergencyActive returns true if one of the active contexts is
“emergency”; getActiveContexts retrieves an array with the currently active contexts;
getActiveContextsPolicySet enables obtaining a policySet integrating the ACDs that
correspond to the active risk specific contexts; getBreakGlassACD, instead, returns the
“break-glass” ACD, used in case of emergency.

isContextEnabled (St r ing Context) : Boolean {}
i sEmergencyActive (S t r ing [] ac t iveContext s) : Boolean {}
getAct iveContexts () : S t r ing [] {}
getAct iveContext sPo l i cySet (S t r ing [] ac t iveContext s) : S t r ing {}
getBreakGlassACD () : S t r ing {}

Listing 1.2. Request analysis main functions

6.3 Normalization and Effect Processing

In Listing 1.3, functions corresponding to XEngine are reported: xacmlPolicyNormal-
ization normalizes the policies in input, generating a set of range rules; getPDD builds
a Policy Decision Diagram, on which a set of forwarding tables are created by the
constructForwardingTables; finally, processRequest generates an OriginBlock (adopted
to compute the effect), based on the request and computed forwarding tables.

xacmlPol icyNormal izat ion (St r ing p o l i c y) : RangeRules [] {}
getPDD(RangeRule [] rangeRules) : PDD {}

Title Suppressed Due to Excessive Length 13

constructForwardingTables (PDD pdd) : ForwardingTable [] {}
processRequest (Request request , ForwardingTable []

forwardingTables) : Orig inBlock {}

Listing 1.3. Request analysis main functions

7 Implementation

In this section we shortly describe the implementation details of the proposed risk-
adaptive ACS and the conflict analysis algorithm. The ACS is developed employing
open source technologies offered by WSO2. More precisely, Balana (an implementation
of XACML 3.0) and WSO2 Identity Server, which implement XACML 3.0’s data-flow
model are used. To be able to use these frameworks for our purposes some modifications
have taken place that is described in what follows.

7.1 Customization of the Policy Editor

WSO2 Identity Server is modified to adapt its PAP’s (Policy Administration Point)
user interface, to enable customization of XACML security rules, policies and policy
sets based on our specific requirements. In the original WSO2 PAP Basic Policy Editor
user interface, it was not possible to specify a target/condition on a different resource
attribute than its identifier. Moreover, we needed to add contexts as the attribute of
the Environment and to set it as the target of XACML Policy for defining context-
specific ACDs. With the mentioned modifications we are able to automatically build
XACML policy language to define ACDs based on any attribute of Subjects, Objects
and the Environment.

7.2 ECA Rules Implementation

ECA rules are implemented via the following XML schema shown in Listing 1.4. We
adopted similar notations to XACML policies for ECA rules for expressiveness, clarity
and simplification of usage.

<metarule> :− <when> < i f> <then>

<when> :− <when anyof>
<when anyof> :− <when a l l o f>+

<when a l l o f> :− <r i s k>+

<r i s k> :− name ,<r i s k pa ramet e r s>
<r i s k pa ramet e r s> :− <r i sk paramete r>+

< i f> :− < i f a n y o f>
< i f a n y o f> :− < i f a l l o f>+

< i f a l l o f> :− <cond i t i on>+

<cond i t i on> :− name ,<cond i t i on paramete r s>
<cond i t i on paramete r s> :− <cond i t i on parameter>+

<cond i t i on parameter> :− value , type

14 Mahsa Teimourikia et al.

<then> :− <a c t i o n s>
<a c t i o n s> :− <ac t i on>+

<ac t i on> :− <ac t i on paramete r s>
<ac t i on paramete r s> :− <act ion parameter>+

<act ion parameter> :− actionType , name , value , type
type :− “variable”|“immediate”

Listing 1.4. Meta-rule XML structure

7.3 Conflict Analysis and Managing Multiple Contexts

According to the proposed risk-adaptive ACS, when a new risk arrives and the system is
in its “safe” state (i.e., safe context is active), then the string that identifies the context
will be assigned to the environment context attribute (eni.Context where eni ∈ EN).
Otherwise, if the system is already in a risk state, the new risk-specific context will be
appended to eni.Context, according to the following notation:

eni.context == “context1#level&context2#level&...&contextn#level′′

Where context is the unique name of the context and level is the context’s level of
criticality. Thanks to this kind of notation, we can keep the environment’s context
attribute as a simple data type. When needed, we can read all the contexts that are
activated, by simply splitting the string. This does not affect the efficiency much as
this string does not get very long for each section of the environment assuming that no
more that some limited number of risks happen at a time. At this point, the ACS (in
its PDP component), will apply XEngine algorithm, combining all the policies that are
triggered by the active contexts included in the eni.Context string. When a context
is no longer active (which is detected by the SMS [3]), the context in the eni.Context
string is removed. Then, the presented algorithms for conflict analysis and resolution
will re-combine the currently active ACDs. If there are no more active risk-specific
contexts left, the PDP considers general and safe ACDs.

8 Concluding Remarks and Future Works

In this paper we have presented our risk-adaptive ACS, based on the ABAC paradigm
and XACML policy language. For each category of entity involved in the system (sub-
ject, object and environment), two types of attributes are considered: security related
and context specific (the values of the latter depend upon the data received from the
monitoring devices and is updated when there is a change). We have realized a hierar-
chical structure of safety-centric contexts, which lets us manage security rules specified
for various risks of level of criticality using hierarchies of ACDs. To define the contexts
ECA rules are considered that using the risk description and applying the predefined
conditions identify the context.

Considering the dynamic combination of the ACDs may pose unpredictable conflict,
at this point, we have adopted conflict analysis and resolution algorithm based on
XEngine, to find and resolve possible conflicts among the ACDs’ security rules that
are applicable by the enabled contexts. To be able to response in a timely manner to
emergency situations we have enabled the possibility to adopt Break-Glass security
rules with minimum reasoning and no need for conflict analysis. Finally, when the

Title Suppressed Due to Excessive Length 15

environment is in a safe state the ACS roles back to security rules that are normally
applied.

One of the challenges regarding the security rules and the ECA rules adopted in
this work is to automatically check their consistency. Moreover, to evaluate real-time
efficiency of the proposed approach use-cases and scenarios should be considered and
tested on the implemented ACS. As future works, authors will consider mentioned
issues.

References

1. M. Al-Zewairi, J. Alqatawna, and J. Atoum. Risk adaptive hybrid rfid access
control system. Security and Communication Networks, 8(18):3826–3835, 2015.

2. D. Fall, T. Okuda, Y. Kadobayashi, and S. Yamaguchi. Risk adaptive authoriza-
tion mechanism (radam) for cloud computing. Journal of Information Processing,
24(2):371–380, 2016.

3. M. Fugini, M. Teimourikia, and G. Hadjichristofi. A web-based cooperative tool
for risk management with adaptive security. Future Generation Computer Systems,
54:409–422, 2016.

4. S. Gusmeroli, S. Piccione, and D. Rotondi. A capability-based security approach
to manage access control in the internet of things. Mathematical and Computer
Modelling, 58(5):1189–1205, 2013.

5. C. G. Hoyos and B. Zimolong. Occupational safety and accident prevention: be-
havioral strategies and methods. Elsevier, 2014.

6. V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. Attribute-based access control. Com-
puter, (2):85–88, 2015.

7. X. Jin, R. Krishnan, and R. S. Sandhu. A unified attribute-based access control
model covering dac, mac and rbac. DBSec, 12:41–55, 2012.

8. A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: a fast and scalable xacml
policy evaluation engine. In ACM SIGMETRICS Performance Evaluation Review,
volume 36, pages 265–276. ACM, 2008.

9. M. A. Neri, M. Guarnieri, E. Magri, S. Mutti, and S. Paraboschi. Conflict detection
in security policies using semantic web technology. In Satellite Telecommunications
(ESTEL), 2012 IEEE First AESS European Conference on, pages 1–6. IEEE, 2012.

10. R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security and
privacy in distributed internet of things. Computer Networks, 57(10):2266–2279,
2013.

11. S. Schefer-Wenzl, H. Bukvova, and M. Strembeck. A review of delegation and
break-glass models for flexible access control management. In Business Information
Systems Workshops, pages 93–104. Springer, 2014.

12. I. Shamoon, Q. Rajpoot, and A. Shibli. Policy conflict management using xacml.
In Computing and Networking Technology (ICCNT), 2012 8th International Con-
ference on, pages 287–291. IEEE, 2012.

13. K. K. Venkatasubramanian, T. Mukherjee, and S. K. Gupta. Caac–an adaptive
and proactive access control approach for emergencies in smart infrastructures.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 8(4):20, 2014.

14. D. Yan, J. Huang, Y. Tian, Y. Zhao, and F. Yang. Policy conflict detection in com-
posite web services with rbac. In Web Services (ICWS), 2014 IEEE International
Conference on, pages 534–541. IEEE, 2014.

